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FINAL TECHNICAL REPORT

Introduction

The principal goal of this research effort was to develop
an effective computational algorithm for the estimation of
parameters in distributed parameter systems. The algorithm
was developed in a general setting which allowed application
to phenomena modeled by delay-differential equations, Volterra
integral equations, and partial differential equations with
memory terms.

In particular we investigated a gradient-based parameter
estimation method for dynamical systems in an abstract space.
The basic functional analytic framework was the theory of
semigroups of operators in infinite dimensional space. This
framework allowed application to distributed parameter systems
modeled by hereditary systems and partial differential
equations. This research focused both on theoretical aspects,
such as convergence criteria, and on the efficient
implementation and testing of the algorithms for computational
purposes.

Summary of research

The dynamical systems under consideration were of the
general form

x(t) = 4(g)x(t) + Bu(t)
x(0) = xo (1)
y(t) = Cx(t)

where u and y are input and output functions, x is an infinite
dimensional state, and 4(q) is an evolution operator
depending on a possibly distributed parameter q. A
computationally feasible algorithm was developed for solving
the following identification problem.

Problem (ID). Given an input function u and observations
y1 at times tl, 1 =1, ..., m, find a system parameter q
which minimizes the quadratic cost function

m

J(q) =¥ qu(tl;q) - y”:
1=1

2

where x(t;q) is the state at time t of the dynamical systenm
with parameter q.




Hereditary models of fluid-structure interaction often
contain unknown parameters which need to be identified. Such
models may be cast as a dynamical system in an infinite
dimensional space as in equation (1). Our goal was to
identify delays in these models as well as other systenm
parameters. These results were developed jointly with J. A.
Burns and E. M. Cliff of Virginia Tech University and
published in a paper entitled, "Parameter identification for
an abstract Cauchy problem by quasilinearization." For
immediate reference, this paper is included in the appendix of
this report.

Similarly, certain distributed parameter models of
viscoelastic structures may also be formulated as an abstract
dynamical system. The models of interest contain Boltzmann
damping and, in particular, fractional derivative damping.
The numerical phase of this research effort was principally
coricerned with the following aspects of the general secting
described above:

(1) the development and testing of a numerical algorithm for
estimating parameters in a Volterra integral equation
arising from a viscoelastic model of a flexible structure
with Boltzmann damping;

(2) the implementation of numerical methods for a system of
Volterra egquations resulting from a Galerkin
approximation of a partial differential equation with
hereditary effects.

Oour principal research effort was directed toward the
development and estimation of distributed parameter models of
flexible structures with internal damping. The design of
control systems for flexible structures is highly dependent on
the amount of internal damping present in the structure.
Damping parameters typically change as materials and
geometries of the structures change. Accurate and efficient
identification algorithms are needed to estimate a system’s
characteristics and implement a stable control algorithm.

In particular, we considered the partial differential
equation

3

t
putt(x,t) = 3% {Eux(x,t) + gE Iog(t-s)ux(x,s)ds}

+ f(x,t) (2)

on 0 < x<1l, t >0, with appropriate boundary and initial
conditions. The function u(x,t) represents the longitudinal
displacement at position x and time t along a uniform bar of
density p where E is a stiffness parameter and f(x,t) is a
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forcing function. The function g(s) models damping effects.
The integral represents a Boltzmann~type internal damping term
which assumes that the stress is function of the strain and
the strain history. We studied fractional derivative damping
models in which the kernel function is given by an expression
of the form

-Bs
g(s) = — ¢ S > 0, B>0, 0 <a < 1.
T'(i-a)s

An estimation algorithm for a discretized form of equation (2)
was formulated and tested. Using simulated data, it was shown
to be means of identifying the parameters « and 8.

A Galerkin approximation of equation (2) using, for
example, linear splines in the space variable yields a system
of Volterra integro-differential equations with an integrable,
but unbounded, kernel. A gradient-based identification
algorithm for the parameters a and 8 was implemented in a
Volterra equation of the form

0
{ w(t) = Mw(t) + J' K(-s)w(t+s)ds + F(t), t > 0,
w(0) =7, w(s) = ¢(s), s <O,
X0 0 a £(t)
= ’ = ' = ’ ad
where 7 [ 0 M [ 1 0 ] F(t) [ 0 ] an
_Bs
K(s) =—2&___[1 0 oo,
r(1-a)s® [ 0 0 ]

This involved the implementation of numerical methods for
solving the Volterra equation and its sensitivity equations
with respect to the unknown parameters. Where possible,
numerical results were checked against a closed-form solution
obtained by a Laplace transform method using software capable
of symbolic computation.

A gradient-based algorithm for identifying a singularity
in a weakly-singular Volterra integral equation was
established and numerically tested. These results were
published in the Journal of Integral Equations and
Applications in a paper referenced below. Additional
numerical results were published in Applied Numerical
Mathematics, also referenced below. For the immediate
reference this paper is included in the appendix together with
several figures which did not appear in the published version.

The Galerkin approximation of the hereditary partial




differential equation model in the space variable gives rise
to a large system of Volterra equations with weakly singular
kernels. Our experience indicated the importance of an
accurate and efficient method for solving systems of this type
with non-smooth solutions. We employed a product integration
method in the time variable.

A class of fractional linear multi-step methods for the
numerical solution of weakly singulary Volterra equations was
investigated, but not found to be significantly superior to
product methods in this context. This was attributed to the
fact that linear multi-step methods require a priori knowledge
of the singularity. Numerical results indicated that the
convergence rates of these methods deteriorate in the absence
of this knowledge. 1In our context the singularity is among
the parameters to be identified so is not known a priori. oOur
problem required a numerical integration scheme which is
robust over a wide range of singularities.

The final numerical results of this research effort
concerned a method for parameter estimation in a semi-discrete
approximation of the partial differential equation

puL, (X,8) = Eu (x,t)

t_-B8(t-s)

R SR [ E_u__ﬂa_ u (%,8)ds + £, (x,t)

r(1-a) 3t "0 (t-s)
with boundary conditions u(0,t) = 0, u(i,t) = 0, and
initial conditions u(x,0) = uo(x), ut(x,O) = ul(x).

Integrating with respect to t one obtains
t
put(x,t) = Ejouxx(x,s)ds +
te-B(t-s)

¥ u__(x,s)ds + f_(x,t)
r(i-a) J-o (t-s)* *¥ 2

t
where fz(x,t) = I fl(x,s)ds + pul(x).
0

We applied a Galerkin approximation in which the interval
[0,1] is divided into N equal parts and the homogeneous
boundary conditions allowed to approximate the solution by a
N
function of the form u(x,t} = z aj(t)¢j(x) where ¢j is a cubic
3=0
spline basis element. Substituting in the equation, taking an
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inner product with a basis element Prr and integratiné by
parts yielded a Volterra equation in t of the form

t
pANv(t) = -EDNI v(s)ds -
0

N
F(lia) ° I

t =B (t-s)
o v(s)ds + f3(t)
0 (t-s)

where AN and DY are N+1 x N+1 matrices depending on inner
products of ¢j and ¢3.

The quasilinearization algorithm required that we solve
this equation along with its sensitivity equations obtained by
differentiating with respect to a and 8, the unknown
parameters. - The sensitivity equations also have weakly
singular kernels so that the same numerical methods may be
applied. These results will be reported in the Proceedings of
the World Congress of Nonlinear Analysts. This paper in
included for reference in the appendix of this report.

Research articles

The following papers relating to this research effort were
published or will soon appear in refereed journals or as
invited papers in conference proceedings.

D. W. Brewer, Gradient methods for identification of
distributed parameter systems, Proceedings of the 28th IEEE
Conference on Decision and Control, December 1989, 599-603,

D. W. Brewer and R. K. Powers, Parameter identification in a
Volterra equation with weakly singular kernel, Journal of
Integral Equations and Applications 2(1990), 353-373.

D. W. Brewer and R. K. Powers, Parameter estimation for a
Volterra integro-differential equation, Applied Numerical
Mathematics 9(1992), 307-320.

D. W. Brewer and R. K. Powers, A direct method for parameter
estimation in distributed systems, Proceedings of the World
Congress of Nonlinear Analysts, August 1992, to appear.

D. W. Brewer, J. A. Burns, and E. M. Cliff, Parameter
estimation for an abstract Cauchy problem by
quasilinearization, Quarterly of Applied Mathematics 51(1993),
1-22.
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1. Introduction

During the past fifteen years considerable effort has been devoted to
the problem of estimating unknown parameters in distributed parameter
systems. The recent book by Banks and Kunisch [9] provides an excellent
account of the progress made in the field. Many parameter estimation
problems are best formulated as optimization problems (sometimes over
infinite dimensional "parameter spaces”) and algorithms are developed to
minimize an appropriate cost function. Although there are several
approaches to these problems, their infinite dimensional nature requires
that numerical approximations be introduced at some point in the analysis.
Consequently, there are two basic classes of algorithms for eptimization
based parameter estimation. The first type of algorithm, and the most
frequently used for dynamic problems, is indirect and proceeds by initially
approximating the dynamic equations (e.g. finite elements, finite
differences, etc.) and then using optimization algorithms on the finite
dimensional problem. This approach is typified by the papers [1]1-[6], [81,
{101, and {18].

The second more direct approach is based on the direct application of
an optimization algorithm and employing numerical approximations at each
step of the algorithm to compute the necessary solutions of the dynamic
equations. This approach is used in [12], [13], [17], and {19]. Both
methods have advantages and disadvantages. Depending on the particular
type of distributea parameter system, one method may out perform the
other.

Although we shall consider only the problem of identifying a finite
number of parameters, the infinite dimensional dynamic constraint enters
into the optimization algorithm. Basically, the objective function from
parameter space to R is a composition of a finite rank map with an
operator (defining the dynamic constraint) on an infinite dimensional
space. Therefore, any method that requires gradients to be computed will
have to deal with the differentiation of the infinite dimensional
constraint, i.e¢. the chain rule is needed. It is in this sense that the
quasilinearization algorithm considered here has an "infinite dimensional”

nature.
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Direct methods such as quasilinearization considered here are often
limited by the fact that the dependence on unknown parameters of the
solution to the infinite dimensional dynamical equations may not be "smooth
enough” to establish convergence of the algorithm. Indeed, some algorithms
may not be properly defined without this necessary smoothness. Indirect
methods avoid this difficulty and often lead to easily implemented
algorithms. On the other hand, when direct methods can be applied it is
sometimes possible to establish the convergence and the rates of
convergence to the unknown optimal parameters (see [13], [19]).

This paper considers the dependence on an unknown parameter q of the

solution of the linear abstract Cauchy problem

x(t)
(1.1) {

Alg)x(t) + u(t), 0<t<T,

x(0)

"

Xg-
Qur ultimate gral is to formulate and establish the convergence of a
gradient-based parameter estimation algorithm applicable in this abstract
setting.

This algorithm employs computation of the gradient qu(t;q) of the

solution of (1.1) with respect to the parameter. Conditions for the
existence of this gradient are established in [11]. In Section 2 we review
these conditions and the general setting for the remainder of the paper.
Convergence of the algorithm requires certain smoothness properties of the

gradient qu(t;q) with respect to q. These properties are established in

Section 3 and their applicability to a linear delay-differential equation
is discussed in Section 4. 1In this example the delay is among the
parameters so that in this setting the parameter dependence appears in
unbounded terms of the evolution operator A(q).

An abstract parameter estimation algorithm for a finite dimensional
parameter space using a discrete cost function is presented in Section §.
In Section 6 its convergence is established using the results of Section 3.
In Section 7 we present several numerical examples which indicate the
performance of the algorithm for delay and coefficient estimation in linear

delay-differential equations. Additional examples may be found in [12].
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Numerical testing and evaluation on a wider variety of parameter estimation

problems will be undertaken in a subsequert paper.
2. The General Setting

The application of quasilinearization to parameter estimation requires
knowledge of the derivative of the state with respect tc the unknown
parameter. This topic is addressed in [11]. In this section we review the
framework used there to obtain differentiability and establish notation to
be used in the remainder of this paper.

Let P be ar op2n subset of a normed linear space P with norm [e] and
let X be a Banach space with norm |[e||. For every q € P let A(q) be a

linear operator on D(A(q)) in X. Throughout this paper we assume
(H1) A(q) generates a strongly continuous semigroup S(t;q) on X;

(H2) D(A(q)) = D is independent of q;

(H3)  ||s(t;q)x|) < Mewt”X”, xe€X, t>0, qgeD, for some constants

M and w independent of q, %, and t.

t
Fix T > 0 and u € Ll(O,T;X), Define Q(t;q) = f S(t-s;qlu{s)ds for q € P,
0

0 <t<T. Note that if (1.1) has a strong solution then it is given by
the formula x(t) = S{'t;q)x0 + Q(t;q) for 0 <t <T.

In applications of this theory it is useful to consider just those
terms of A(q) in which the parameter appears. To this end we write
A(q) = A + B{q) where A and B(q) both have domain D and A is independent

of q. Concerning B{q) we ussume the following:

(H4) For every gq, qg € P there is a constant K such that

T
j HB(q)S(t;qO)det < K||x]] for all x € D.
0

12
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In Section 4 we discuss an example in which an unbounded operator B(q)

satisfies (H4). This hypothesis does imply, however, that the linear
mapping x - B(q)S(o;qO)x is bounded as a mapping from D into LI(O,T;X).

Let F(q,q,) denote the bounded linear extension of this operator to X. Let
0

"'“1 denote the norm in L!(0,T:X). Concerning F we assume the following:
(H5) There is clased subspace Y of X such that
. 1 )
(1) F(q,qo)xo € L' (0,T;Y) for q, q, € P, and

(ii) for every q, € P and € > 0 there exists § > 0 such that
IF(a,a,)y - Flay,qq)yll, < €llyll for y € Y and

la - gyl < 6.

The analogue of F for the function Q(t;q) is the mapping G(q,qo) from

L'(0,T;D) into L'(0,T;X) defined by
t
[G(q,qO)WJ(t) = I B(q)S(t-s;qO)w(s)ds.
0

By (H4) is follows that G can be extended to a bounded linear mapping on

LI(O,T;X) s0 that in particular G(q,qo)u is defined as an element of

Ll(O,T;X). In addition we assume

€P

(H6)  Glq,q )u € L0, T;Y) for q, 1,

where Y denotes the subspace required by (H5).

13




3. Parameter Dependence

In this section we deduce smoothness properties of the solution

x(t:q) = S(t;q)x0 + Q(t;q) with respect to q. These properties are derived
from similar properties of F(q,qo) and G(q,qo) which are operators related
to A(q). These results will be used in Section 5 to prove convergence of
the parameter estimation algorithm. Throughout this section T > 0, X, € X,
and u € LI(O,T;X) are fixed as given in (1.1). The symbol Dq denotes

Frechet differentiation with respect to q. These results are given as a

series of lemmas whose proofs are at the end of this section.

Lemma 3.1. Suppose (H1) - (H5) hold. In addition, suppose that for a

given q* € P

(H7) F(q,qo)xo is Frechet differentiable with respect to q at q,

for every 9 € P.

For brevity, let DF(qO) denote Dq[F(q,qO)xo]l for q, € P. In addition,
0

9=q

suppose

(H8) DF(q) is strongly continuous in q at q*, that is, for each

h € P the mapping q = DF{(q)h from P into LI(O,T;X) is

continuous at q*,

Then for each t € [0,T], S(t;q)x0 is Frechet diffentiable with respect to q
at every q € P and Dq[S(t;q)xO] is strongly continuous with respect to q

at q*.

Lemma 3.2. Suppose (Hl1) - (H6) hold and in addition suppose that for a

given q* € P,

14




(H9) G(q,qo)u is Frechet differentiable with respect to q at q,

for every q0 € P.

Again denoting this derivative by DG(qO) for q, € P, assume
(H10) DG(q) is strongly continuous in q at q*.

Then for t € [0,T), Q(t;q) is Frechet differentiable with respect to q at
every q € P and Dq[Q(t;q)] is strongly continuous in q at q*.

Lemma 3.3. Suppose (H1) - (H5) and (H7) hold and in addition suppose
(H11) F(q,q*) is locally Lipschitz continuous in q at q*, uniformly

for y € Y, thar is, there exist constants Kl, 61 > 0 such that

IF(a,a")y - Fra.q*)yll, < K la - a*| |yl

whenever |q - gq*| < 5l and y € Y.

Moreover, assume that

(H12) DF(q) is strongly locally Lipschitz continuous with respect

to q at q*. That is, for each h € P, there are constants

K, 6§ » 0 such that
IDF(q)h - DF(q*)h|| < K|q - q*|
for |lq - q*| < 6.

Then Dq[S(t;q)xO] is strongly locally Lipschitz continuous with respect to

q at q* for every t € [0,T].

15




Lemma 3.4. Suppose (H1) - (H6), (H9) - (H10) hold and in addition suppose

(H13) DG(q) is strongly locally Lipschitz continuous with

respect to q at q*.

Then Dq[Q(t;q)] is strongly locally Lipschitz continuous with respect to q

at q* for every t € [0,T].

Although the assumptions (H1) - (H13) are rather technical, we shall
see that they can be easily verified for delay systems even in the case
that the unknown parameter is the delay itself. Therefore, the results
presented here remove the limitations placed on the perturbation B(q) in
papers [13] and [16].

For completeness we now present the proofs of Lemma 3.1 - Lemma 3.4.
However, these proofs make use of the basic results found in [11] and in
order to keep the length of the proofs reasonable we assume that the reader
has [11] in hand.

Proof of Lemma 3.1. 1t is shown in [11] that (H1) - (H5), (H7) imply that

Dq[S(t;q)xO] exists for q € P. Furthermore, it is given by the formula

t

(3.1) %mumn&h=fsuqmnwmmuwu,hea
0

We therefore obtain by substitution

(3.2) Dq[S(t;q)xolh - Dq[S(t;q‘)xO]h

t
- j [S(t-s:q) - S(t-s:q*)1([DF(q)h](s))ds
0

t
. f S(t-s:q*)([DF(q)h](s) ~ [DF(q*)h]1(s))ds.
0

16




Let € > 0 be given and let C = Mewt. It can be shown (see the proof of
Theorem 1 [11]) that for all x € X

(3.3) {IS(t;q)x - S(t;q*)x|| < C||F(q,q*)x - F(q‘,q*)x“l.
Combining (3.3) with (H5ii) shows that for some 61 >0

[Is(t,q)y - S(t;q*)y[| < eCllyll, 0 <t <T, yey,

whenever |[q - q*] < § In particular, putting y = [DF(q)hl(s) € Y by

.
(H5i) we obtain

[J(S(t-s;q) - S(t-s;q*)1[DF(q)h](s)| < €C||[DF(q)h](s)||

for |q - q*| < 6

<b,ae sc¢€ (0,T). Since DF(q)h is continuous at q*, there

exist constants Kz' 52 > 0 such that

“DF(q)hH1 <K, for |q - q*| < §,.

Combining these estimates shows that the first term in (3.2) is bounded
by eCK2 if |q - q*| < min(6l,62).

Using (H8) it is easy to see that there exists 63 > 0 such that the
second term in (3.2) is bounded by €C for |q ~ q*| < 63. These estimates

complete the proof of Lemma 3.1.
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Proof of Lemma 3.2. By Theorem 3 of [11], Dq[Q(t;q)] exists for q € P and

(3.4) Dq[Q(t;q)] - Dq[Q(t;q*)]

t
- f [S(t-s:q) - S(t-s:q*)]1[DG(q)(s)]ds
0

t
+ f S(t-s:q*)[(DG(q))(s) - (DG(q*))(s)]ds
0

where u has been suppressed in the notation. Since DG(g) € Ll(O,T;Y) for

q € P by (H6), the proof follows exactly as in the proof of Lemma 3.1.

Proof of Lemma 3.3. Let € > 0 be given. By (3.3) and (H11) there exists

6l > 0 such that

lIS(t; @)y - s(t;a*)yll < K lIylllq - o*|

for y € Y and |q - q*| < 6, . Since DF(q)h € L'(0,T;Y) by (H5i) we have as
in the proof of Lemma 2.1 that the first term of (3.2) is bounded by
Klelq - q*| for |q - ¢*| < min (61,62). An estimate of the same form is

easily obtained for the second term of (3.2) using (H12). These estimates
complete the proof of Lemma 3.3.

Proof of Lemma 3.4. Since DG(q)u € Lx(O,T;Y) by (H6), the proof follows

exactly as in the proof of Lemma 3.3 using (3.4) in place of (3‘2).
4. Application to a Delay-Differential Equation

In this section we apply the framework of the previous sections to the

linear delay-differential equation
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n
x(t)= agx(t) + L a, x(t - q, ) + ult)

k=1
(4.1) x(0) =9
Xy = ©.
Let P = Rn, fix r >0, and let P = {q = (ql,qz, e, qn) : 0 < q <r
for k =1,2,. . .,n}. In equation (4.1), n €R, a, € R, k=0,1,. . .,n,

k
© € L'(-r, 0) with norm denoted by Hp"l, ueL'(0,T), and x,(8) = x(t+s)

for t >0, -r < s < 0. By a solution of (4.1) we mean a function x which
is absolutely continuous on [0,T] and satisfies (4.1) almost everywhere on
(0,T).

Following the construction in [14], we take X = R X Ll(—r,O) with norm
ln,©)ll = |nl + llell, and define for q € P an operator A(g) on

D= {{n,p) € X: p is abs. cont. on [-r,0], § € Ll(-r,O), and
©(0) = n}

by
n L ]
A(q){n,p) = (ayw(0) + L apl-q.), ¢).
k=1

Then is well known that A(q) generates a strongly continuous semigroup
S(t;q) on X satisfying S{t;q) = (y(t), yt) where y(t) = y(t;q) denotes the

solution of (4.1) with u = 0. It is a consequence of standard results that
(H1) - (H3) hold in this setting.

For q = (ql,. . .,qn) and q, in P, (n,p) € X, and w € LI(O,T) it

follows that in this example the mappings F and G of Section 3 are given by

19




n
(4.2) F(q.qo)(n9p) = ( ) ak)’("qk;qo), 0)
=1

k

and

n
(4.3) [G(q,qo)w}(t) =( X akz(t~qk; ), 0)

k=1 %
for a.e. t € (0,T) where 2z(t;q) denotes the solution of (4.1) withu = w
and (n,p) = (0,0). It is shown in [11] that these mappings satisfy
(H4) - (H6) with the closed subspace Y = R x {0}. It is also shown in [11]
that F and G satisfy the differentiability hypotheses (H7) and (H9) for
(n,p) = X, € D and 9,9, € P. Furthermore, their Frechet derivatives are

given by

(4.4) {DF(q)h](t)

n
( -Zay(tq ;qh , 0)
k=1 k k k

and

n
( -X%a2(t-q ;q)h,, 0)
k=1 k k k

(4.5) [DG(q)h](t)

for qe P, h=(h .,hn) € Rn, where y(t;q) is the solution of (4.1)

1"
with u = 0 and z(t;q) is the solution of (4.1) with (n,p) = (0,0).

It remains to establish conditions under which (H8), (H10) - (H13) are
satisfied.

Lemma 4.1. Fix q* = (q:,. . .,q;) € Pand x, € D. Then F(q.q‘)x0 as

0
defined by (4.2) satisfies (H11).

Proof: In Section 5 of [11] it is shown that there are constants C2 and
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52 > 0 such that
IF(a*+h,q*)(n,0) ~ F(a*,q*)(n,0)|] < C, |h]lj(n,0)|

n
for h e R", n e R, |h| < 6,. Here we define |h| = I Ihkl. This estimate
k=1 '

is equivalent to (H11) with Y = R x {0}.

Lemma 4.2. Suppose x, = (n,p) € D. Then DF(q) as given by (4.4) satisfies

(H8). Moreover, if in addition 9 is of bounded variation on [-r,01, then
DF(q) satisfies (H12).

Proof: Let A = max |a,| and |h| = max |h,|. Then we obtain the estimate
——— m k k K k

) n T
(4.6)  [IpP(h - DF(@)nll, < A ] £ [ [$(t-g5a) - §Ct-a;0%) [dt
k=10

n T
+ Ayl E [ 5 tea 0% - $(t-a a0 at.
k=10

Now from (4.1) we obtain

T [ ] T. [ ]
(4.7) f 1§(t—qk;q) y(t-qk;q*)ldt < I ly(t;q) - y(t;q*)|dt
0 0

IA

n T
Ap L f [y(t-q.:q) - y(t-q*;q*)|dt
j=1Y0 ] J

IA

n T
AL X f |y(t-q:5q) - y(t-q.;q*)|dt
n T
+A L I [y(t-q.;9*) - y(t-q*;q*)|[dt
Pi=1V0 J )
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n T
<A ) f [y(t;q) - y(t;q*)]dt
j=1v0

n .l
+A T Iy(t—qj;q‘) - y(t-qg;q*)]dt.

=10

Now since y(t;q) = S(t;q)x0 is differentiable with respect to q it is not

difficult to show that there are constants 8 and é such that

T
(4.8) f [y(t;q) - y(t;q*)|dt < Blq -~ q*|

0
whenever |q - q*| < 6. Combining (4.7) and (4.8) with (4.6) yields
(4.9)  [IDF(a)h - DF(a*)hl| < Al[h|nglq ~ q*|

2 n T
- . - P I
+ aglhin T [ [y(i-qia%) - y(-apian fat

n T
+ Am|h|k§1f0|§(t-qk;q*) - y(t-qf;q)|dt .

Since (n,p) € D, we have y and ¥ in Ll(-r,T). Therefore, the integral
terms in (4.9) approach zero as q = gq* and (H8) holds. If ¢ is of bounded

variation on [-r,0], then y and y are of bounded variation on [-r,T]. By
{15, Theorem 2.1.7(b)] this implies that the integral terms in (4.9) are
0(|q - q*|) as q » q* so that (H12) holds.

Lemma 4.3. Suppose u € LI(O,T). Then DG(q) as defined by (4.5) satisfies

(H10). Moreover, if in addition u is of bounded variation on [0,T], then
DG(q) satisfies (H13).
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Proof: Using (4.5) in place of (4.4) one obtains the estimate (4.9) above
with y replaced by z. Now if u € Ll(O,T) then z and Z are in Ll(—r,T) S0
that (H10) holds. Similarly, if u is of bounded variation on {0,T], then z

and z are of bounded variation on [-r,T] so that (H13) is satisfied.
5. The Algorithm

In this section we define an estimation algorithm over a finite
dimensional parameter space based on quasilinearization and establish local

convergence using the results of Section 3. In particular, we assume that

the parameter space P is R"with canonical basis ei, i=1,2,. . ., n.

This algorithm can also be cast in a separable Hilbert space as in [17].
Given X, € Dand q e PCR" a strong solution of (1.1) is given by

S(t;q)x0 + Q(t;q). Here we have used the notation of Section 2. Let C be

a bounded linear mapping from X into R£ and define

~(t;q) = C[S(t;q)xo + Q(t;q)].

The parameter estimation algorithm is related to the following optimization

problem.
Problem 5.1. Let ij € Rl, j=1.2, . . ., m be data values taken at
times tj e [0, T}, j=1,2, .. ., m respectively. For q € P define the

quadratic cost function

J(q) =

- 2
[¥(t.;q) -~ y.|°.
i i j

it ™3

1

Find q* € P such that J(q*) < J(q) for all q € P.
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The quasilinearization method defines a recursive algorithm whose
fixed point is a local solution of Problem 5.1. A more complete

exposition is given in [7]. Given an initial guess q, € P define

Q,, = fla), k=0,1,2,3,...
where

£(g) = q - [D(q)1 'blq)

T

D(q) = I M (tj;Q)M(tj;q)

]

it 18

1

b(q) = .

T . . ca) - T
; M (tj,q)[v(tj.q) yj]

il 8

1

and the matrix M(t;q) has its ith column M'(t:q) given by
M'(t;a) = OD_[S(ti@)xy + Qt;a)le;, i=1,2,3,...,n.

Lemma 5.1. Suppose the hypotheses of Lemmas 3.1 and 3.2 are satisfied.

Then M(tj;Q) is continuous in q at q*.

Proof. This is a direct consequence of Lemmas 3.1 and 3.2 and the above

definitions.

Lemma 5.2. Suppose the hypotheses of Lemmas 3.3 and 3.4 are satisfied.

Then there exist constants a, & > Q0 such that
]M(tj;Q) - M(tj;Q‘)l < alq - q*f.
‘ .
for |9 -q | <6, j=1,2,....m
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Proof. This is a direct consequence of Lemmas 3.3 and 3.4 and the above

definitions.

Note that although the smoothness results of the previous sections
hold for an infinite dimensional parameter, the implementation of the
solution of Problem 5.1 by this method is limited to finitely many
parameters. In fact a simple rank argument is used in [17] to show that
if the number of parameters, n, exceeds the number of data values, ml,
then the matrix D(q) is singular. 1In [17] a pseudo-inverse is proposed as

a means of solving tlhe underdetermined problem.

We can now prove the following convergence results. These results are
typical of quasilinearization methods and the proofs given here are in the
same spirit as those in [7]. We obtain superlinear convergence when there
is an exact fit to data (Theorem 5.1) and linear convergence in the

presence of error {(Theorem 5.2).

Theorem 5.1. Suppose the hypotbeses of Lemmas 3.1 and 3.2 are satisfied.

Moreover, assume [D(q"‘)]"1 exists, f(q*) = q*, and J(q*) = 0. Then for

every € > O there exists 6 > 0 such that
If(q) - f(q*}| < €|q - q*|

for lq - q*| < &§. In particular, there is a neighborhood U of q* such that
q q* as k - ® whenever qa, € u.

Proof. Note that f(q*) = q* implies that b(q*) = 0, or

m T -
(5.1) ¥y (tj;q‘)(ﬁ(tj;q') - yj] = 0.

J=1
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Therefore

£(q) - f(q*) = D(q) ' [N(q)(g - q*) - b(q)]

1}

m
)Y & ﬂufmmufmm-qﬂ-<ﬂ%m)-%n
j=1

m
D' ¢

MT(t.;q)[M(t.;q) - M(t.:q*)1(q - gq*)
i J ) J

1

m
-p(7! I MT(tj;q)[q(tj;q) - 2(tjia%) - M(tia)(q - q*))
j=1

- d(g)t
i

It 38

T. ca*) . v
. M (tj,q)[ﬁ(tj,q ) yj].

Therefore, using (5.1) we have that
(5.2) f(q) - f(q*) =

T

Dg)"! T M (t5;0)(M(t;50) - W(t;:q®))(a - q*)

i

I 98

1

m
- & MT(tj;q)[v(tj;q) - 1(tjia%) - M(t5a)q - a*)]
j=1

- D(g)"!
j

it

T._T.t t.:q*) - v
1[M (tj,q) M (tj,q ) H A« j,q ) yj].

Note that D(q)—1 exists and is bounded in a neighborhood of q* since
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D(q"‘)-1 exists by assumption and D(q)-l is continuous at q* by Lemma 5.1.
Let € > 0 be given. Using Lemma 5.1 it is easy to see that there
exist constants Bl, 61 > 0 such that the first term in (5.2) is bounded by

£ﬂllq - q*| for |q - q*| < 61. Furthermore, since M(tj;q‘) is the Frechet
derivative of 7(tj;q) at q*, one can show that there exist constants
B, 52> 0 such that the second term of (5.2) is bounded by fﬂzlq - q*| for

q - q*| < 6,. Combining these estimates with (5.2) yields
2 .

(5.3) |f(q) - f(q*)] <

-1, 2 T -
eBla -~ q*| + [D(P) | £ {M(t.;q) - M (t;q*)] [v(t.;q*) - ¥y.],
jo1 j j j

for |q - q*| < § = min (51,62) and # = B + ﬂz. Since J(q*) = 0, the last

term in (5.3)is zero. This estimate yields the desired result.

The following theorem does not require an exact fit to data, but does
place some technical restrictions on the behaviour of M near q*. Note
that if Lemmas 3.3 and 3.4 hold then there exists & > 0 such that for

0 < 8§ < & there exists a constant K(§) such that

S |M(t,;q) - M(t.;q*)] < K(8)|q - q*]
j=1 J ]

for |q - q*] < 6. Let K* = lim sup K(§) and define

§lo

(5.4) A* = K*|D(q*) 7} max|(tia*) - ¥
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Theorem 5.2. Suppose the hypotheses of Lemmas 3.3 and 3.4 are satisfied.

Moreover, assume [D(q“)]nl exists and f(q*) = q*. Let A* be defined by
(5.4) and assume A* < 1. Then there exists 6* > 0 such that

|f(a) - f(a*)| < A*]q - q*|

for |a - a*| < &*. In particular, q > q* as k > ® whenever

Proof. This estimate is a direct consequence of (5.3).

6. Numerical Examples

In this section we consider several examples in which the above
algorithm was used to solve parameter estimation problems in delay-
differential equations. In these examples the emphasi. is on delay
identification since in the abstract setting this represents an unbounded
perturbation of the generator as noted in Section 4.

With the exception of Example 6.8, the various unknown parameters are
estimated using data generated from closed-form expressions for the
solution found by the "method of steps”. The algorithm is implemented by
an averaging scheme [2] which approximates the state equation and the
associated sensitivity equations by a system of ordinary differential
equations. This system is solved by a fourth-order Runge-Kutta routine.

In the one delay examples the averaging scheme is implemented with the
delay interval [-r,0] divided into sixteen equal segments, except that
Example 6.8 uses 64 equal segments. In the two delay examples the
intervals [-r2, -r1} and [-r1,0] are divided into sixteen equal segments.
All computations were done on a VAX 11/750 minicomputer or a SUN
Microsystem at the Institute for Computer Applications in Science and
Engineering (ICASE).
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Example 6.1. This example illustrates the rapid convergence of the method

for a single unknown parameter—-the delay in the following equation--with
an initial guess which is an order of magnitude greater than the “true
value” of r = 1.0. The equation and the results of the iteration are given
below.

{ x(t) = -2x(t) + 3x(t-r), t >0
x(t)

=t+1, t<O
iterate T error
0 10.000 34.056
1 1.299 0.955
2 0.946 0.175
3 0.989 0.115
4 0.987 0.115

The convergence of the states to ten data points on the interval [0,2] is
illustrated in Figure 1.

Example 6.2. The data is the same as for Example 6.1, however in this case

the algorithm is asked to esgimate the coefficients as well as the delay.
The equation shows an insensitivity to the individual coefficients which
leads to the inaccuracy in the converged estimates. In fact, because of
errors introduced by the averaging scheme for computing the state, the
estimated values fit the data better than the "true values” used to compute
the data by the method of steps. The "true values” are a = -2, b = 3, and

r = 1. The equation and the results of the iteration are given below:

{i(t)
x(t)

ax(t) + bx{(t-r), t >0
t+1, t <0

29




iterate a b r error
0 ~4.000 7.000 2.000 3.379
1 ~0.815 3.537 1.184 2.968
2 ~-1.596 3.342 1.122 6.775
3 ~2.403 3.713 1.002 0.188
4 ~2.250 3.361 1.015 0.094
5 ~2.352 3.483 1.006 0.093

The convergence of the states is illustrated in Figure 2.
Example 6.3. This case illustrates the effect of a forcing function on the

state equation. The nonhomogeneous delay-difierential equation

x(t)
< x(t)

1]

ax(t) + bx(t-r) + u(t), t >0
t+1, t<0

where

0, t<0.1
wlt) =97 ¢ 501

is solved in closed form by the method of steps with parameter values
a =-2,b=3, r=1as in Example 6.2. The results of the parameter

estimation algorithm are given below:
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iterate a b T error
0 -4.000 7.000 2.000 4.0527
1 1.022 3.165 1.140 39.2657
2 -2.637 23.652 1.168 24.9577
3 -5.979 28.631 1.141 11.6964
4 -8.034 23.250 1.118 3.5425
5 -5.167 5.417 1.028 2.04N1
6 -1.239 4,195 1.008 4.8981
7 -2.861 6.222 1.005 1.8930
8 -2.485 3.795 06.998 0.0819
9 -2.115 3.201 1.013 0.0724
10 -2.247 3.380 0.998 0.0691

The results are similar to those of Example 6.3, except that the solution

has become somewhat more sensitive to the coefficients.

Example 6.4. This example indicates the ability of the algorithm to

estimate two unknown delays. The algorithm converges rapidly from a

relatively poor initial guess. The "true values" are T, = 1.0 and

T, = 2.0. The equation and the results of the parameter estimation

algorithm are given below and the convergence of the states to ten data
points on the interval [0,3] is illustrated in Figure 3.

{ x(t)
x(t)

~x(t) + x(t-rl) - x(t—rz), t>0

=t+1, t <0
iterate rl r2 error
0 0.600 4.000 7.500

1.569 3.216 2.295
1.146 2.100 0.100
0.977 1.998 0.034
0.978 2.003 0.052

W ON =
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Example 6.5. The equation and data for this example are the same as in

Example 6.4. In this case the initial guess reverses the order of the
“true"” delay values. The results of this iteration are given below and

covergence of the states on the interval [0,3] is illustrated in Figure 4.

iterate r, T, error
0 2.000 1.000 2.460
1 0.483 1.151 1.379
2 1.561 2.014 0.788
3 1.100 2.072 0.077
4 0.980 2.002 0.033

Example 6.6. In this case the algorithm is asked to estimate parameters in

a delay model of a system with no delay. Ten data points on the interval

[0,2] are computed from the exponential solution of

-2x(t)

{i(t) 2

x(0)

and the algorithm is asked to estimate unknown parameters in the system

{ x(t) = ax(t) + bx(t-r), t > 0
x(t) t+1, t<0

The first four iterations are given below:

iterate a b r error
0 -3.000 3.000 2.000 1.2577
1 -3.060 -0.637 1.947 0.2551
2 -1.687 0.235 1.981 0.1144
3 -1.967 0.025 1.985 0.0110
4 -2.000 0.000 1.986 0.0001

On the fifth iteration the algorithm aborted when it was asked to invert a
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nearly singular matrix., This reflects the fact that at the true parameter

values the state is completely insensitive to the delay.

Example 6.7. This case is the same as the previous example except that the

data is taken from the closed form solution of the nonhomogeneous undelayed

equation

~2x(t) + u(t)

{ x(t) :

x(0)

nou

where u is the same step function as in Example 6.3. The results are

similar to those of the previous example.

iterate a b r error
0 -3.000 3.000 2.000 1.3135
1 -2.848 0.099 1.804 0.5121
2 -1.841 0.138 2.401 0.0811
3 -1.971 0.003 2.508 0.0197

Example 6.8. In this example we consider the second-order equation

2
Q—E(t) + wix(t) + 8 %E(t-r) + alx(t-r) =u(t), t >0,

x(t) =1, t <0,

where u(t) is the step function of Example 6.3. This equation models a
harmonic oscillator with retarded damping and restoring forces. In [13] a
quasilinearization algorithm is used to estimate coefficients in this
equation. The methods of this paper allow the delay r to be added to the
set of unknown parameters. For this example the averaging method was used
to compute "data" values for the parameter estimation algorithm with "true”
= 2.5, a

values of w = 6, a =9, and r = 1. The results of the iterative

0 1
algorithm are given below and the convergence of the states (displacement

and velocity) on the interval [0, 2] is illustrated in Figures 5 and 6.
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iterate w a, a, r error
0 4.100 4,600 6.300 1.500 15.212
1 5.073 6.025 ~8.338 0.918 15.181
2 6.705 4.710 ~0.682 1.524 12.389
3 6.188 -14.677 ~4.838 1.102 31.950
4 5.902 12,347 8.396 1.068 25.234
5 5.964 2.994 8.980 1.061 2.186
6 5.995 2.416 9.016 1.004 0.344
7 6.000 2.503 8.999 1.000 0.007
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PARAMETER IDENTIFICATION IN A VOLTERRA EQUATION

WITH WEAKLY SINGULAR KERNEL!

Dennis W. Brewer2

and

Robert K. Powers

Department of Mathematical Sciences
University of Arkansas
Fayetteville, Arkansas 72701

Abstract, We consider identification of parameters in a
Volterra integro-differential system with a weakly singular
kernel. Such kernels arise in fractional derivative damping
models of viscoelastic materials. The Volterra equation is
cast in a semigroup setting to establish results on the
differentiability of the solution with respect to a parameter.
These results are needed for convergence of the identification
algorithm. Numerical results are presented.

1. Introduction. In this paper we consider the identification
of parameters in a Volterra integro-~differential equation with
a singular kernel. The equation of interest has the form

w(t)
(1.1) {

t
Mw(t) + I K(t-s,p)w(s)ds + F(t), t = 0,

w(0)

il

n, w(s) = ¢(s), s < 0,

1This research was supported by the Air Force Office of
Scientific Research under grant AFOSR-89-0472.

2This paper is dedicated with gratitude to my thesis advisor,
John A. Nohel, on the occasion of his sixty-fifth birthday.

43




where M is an n x n constant matrix, 7m e IRn, P € Ll(—m,o;m“)
and K(-,p) is an n x n singular kernel depending on a
parameter p contained in an admissible parameter set. We are
particularly interested in a kernel function of the form

ye RS

g(s,p) = - o ! s > 0,
F(i-a)s

where I'(-) denotes the gamma function, p = (a,8,7) € R> with
0sa <1 and B8 > 0. Such kernels arise in the study of
fractional derivative models of viscoelastic structures. For a
more complete discussion of the origins of this kernel and the
viscoelastic models we refer the reader to ([12], [18)], [13],
[15], and in particular to [17] and the extensive bibliography
therein.

Banks, et.al. [2] have identified parameters
corresponding to 8 and 7 in a similar (but different) model,
but assumed that o was known. Torvik and Bagley (1], (18] have
estimated the parameter «, but in the Laplace transform
domain. In this paper we restrict ourselves to identifying «
only, though the theory may be modified to include B and 7y as
well,

In order to relate equation (1.1) to a (idealized)
physical model, consider the longitudal motions of a uniform
bar fixed at both ends with Boltzmann type damping. The
governing equation is ([9], [14])

3 t
a
putt(x,t) = — {Eux(x,t) + 3T I g(t—s)ux(x,s)ds }
(1.2) ax 0
+ f(x,t), 0 <x<1, t>o0,
with boundary conditions u(o,t) = 0, u(i,t) = o,
and initial cecnditions u(x,0) = d(x), ut(x,O) = v(X).

Here, u(x,t) represents the axial displacement of position x
at time t, p is the density of the material, E a stiffness
parameter, f(x,t) a forcing function, and
ye B
g(s) = T
'(i-a)s
represents a fractional derivative damping term modified to
have exponential decay {12].
A common approach to the parameter identification problem
4] is to apply a Galerkin~type approximation scheme to the
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beam equation and then incorporate some type of identification
algorithm to the approximating system of integro-differential
equations. If one applies a Galerkin scheme to equation (1.2)
(e.g. using linear splines), one obtains a system of equations
of the form

(1.3) {Ai;%(t) = Bv(t) + cgE Jog(t-s)v(s)ds + F(t) .

A

A A
In this eguation A, B, and C represent constant matrices and
v(t) and F(t) are vectors of appropriate dimension.
In order to retain the salient features but simplify the
analysis in the following sections, we shall consider the
following scalar version of (1.3) :

2 t
d™x a -
L Xt) = ax(t) + & [ g(t-s)x(s)ds + £(t),
(1.4) at? at J‘o
x(0) = x,, X(0) = Xy -

Integrating (1.4) we obtain

_ t t
x(t) = a J x(s)ds + f g(t-s)x(s)ds + E£(t),
(1.5) 0 0
. x(0) = xo,
t.
where f(t) = Xy + I f(s)ds .
0

t
Define z(t) = f x(s)ds , then z(t) = x(t) and we obtain
0

the system of integro~-differential equations

t
x(t) = az(t) + J g(t-s)x(s)ds + £(t),
(1.6) , 0
z(t) = x(t),
with xX(0) = Xge z(0) = 0.

A standard assumption in viscoelasticity [13] is that the
material is in an unstrained state for time t < 0. This would
correspond to u(x,s) = 0 for s < 0 in equation (1.2). It
follows then that x(s) = 0 and 2(s) = 0 for s < 0 in (1.6). If
we define w(t) = col(x(t),z(t)), then w(t) satisfies

45




w(t)

t
Mw (t) +I K(t-s)w(s)ds + F(t),
0
X0
0 !

where M= [ g : ], K(s) = [ gés) g ] , and F(t) = [ fét) ].

(1.7)

w(0)

Since w(s) col(0,0) for s < 0, we may rewrite (1.7) as

t

w(t) = Mw(t) + J K(t-s)w(s)ds + F(t),
_ | %o _ (o

w(O)—[o ,ows = (9], s<o,

which is in the form of equation (1.1).

The remainder of the paper is outlined as follows. In
Section 2 we review previous results that place equation (1.1)
in a semigroup setting in order to establish existence of
solutions. Differentiability results needed for the parameter
estimation algorithm are then proved. In Section 3 the
guasilinearization algorithm used for the identification
procedure is discussed along with convergence results.
Numerical examples are given in Section 4.

2. The abstract setting. In this section we develop an
abstract framework for the Volterra integral equation
discussed in the previous section. Namely, we will consider
equation (1.1) in the form

w(t)
(2.1) {
w(O0)

i

t
Mw(t) + f K(~-s,a)w(t+s)ds + F(t), t > O,
)

n, w(s) = ¢(s), s <0,

X
Wheren=[ °] <&, u=(3 5] rey = [ £§P), ana
0
_.ﬂs
(2.2) K(s,a) =F£—&F{é o). s> o
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We assume B is a positive constant and 0 s« < 1. _By a
solution of (2.1) we mean a function w: (—m,w)-'Rz such that
w is absolutely continuous (A.C.) on [0,») and satisfies the
integral equation a.e. on (0,x}, W(0) =7, and w(s) = ¢(s)
a.e., on (-»,0].

Our semigroup formulation follows the construction in (5]
as further dgyoloped in [10])] and [11]. Define the product
space X=R x L' (=»,0) with norm
u(n,w)ux = |n} + ”w”Ll(—m 0)" Consider the homogeneous

equation

{ y(t)
(2.3)
y(0)

t
My(t) + j K(-s,a)y(t+s)ds, t > 0,
-0

n, Y{(s) = ¢(s), s < 0.

Then for each pair (m,¢) € X, (2.3) has a unique solution, and
moreover the mapping S(t,a) (m,¢) = (y(t),yt(-)) defines a

Co-semigroup on X. Here we have used the notation

Ye(s) = y(t+s), £ =0, s <O.

Fix € € (0, 1) and define the parameter set P = [0, 1l-c].
Then it is readily seen from (2.2) that there is a constant C,
independent of «, such that

o
(2.4) J |K(s,a)lds = C for all a € P.
0

Under this condition it is shown in [10] and [11] that the
semigroup S(t,a) is generated by a closed and densely-defined
operator d4(a) defined by

Dom(d{(a)) = D = {(m,p) € X: ¢ is A.C. on compact subsets
of (-=,0], ¢ € L'(-»,0), 9(0) = m)

and

0
d(a) (n,9) = (Mn + j K(-s,a)p(s)ds, ¢ ) for (m,¢) € D.

Our task is to show that the solution w(t,a) = w(t) of
(2.1) is differentiable with respect to a and that this
derivative is sufficiently smooth to establish the local
convergence of the algorithm defined in Section 3. This
involves verifying the conditions in the semigroup setting
established in [6] and [8]). We therefore assume in what
follows that the reader has these papers in hand.

Since we are interested in dependence on a, we write
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d(a) = 4 + B(a) where 4 is independent of a and

0
(2.5) B(«) (m,9) = ( [ K(-s,@)e(s)ds, 0 ), (m,¢) € D.

Note:}hat the range of B(a) is the finite-dimensional space
Y=R x {0}.

Fix Yo € X, a, € P, and T > 0. Then the

differentiability with respect to a at a, of the solution

y(t,a) of (2.3) is a consequence of the following theorem.

Theorem 2.1. For every t € [0,T], S(t,a)y0 as defined above

is Frechét differentiable with respect to a at «, and its

0
derivative is given by

t
D,S(t,0)y, = jOS(t-s,ao)[Das(ao>y01(s)ds, 0stsT,

where ¥(a) is for each a € P a mapping from X into LX(O,T:X)
defined by

0
(2.6) [F(@)Y1(t) = ( | K(-s,a)y(t+s)ds, 0 )

for Yy € X, 0= t = T. Recall that y is the solution of (2.3)
with (n,p) = yo.

Proof: This result is proved in [7] for a general Volterra
kernel K(s,«) satisfying condition (2.4) under the following
hypothesis:

the mapping a - K(*,a) from P into Ll(o,w) is Frechét
(2.7) differentiable with respect o at «,.

Recall that K(s,a) = g(s,a){ é g ] where
ye BS
g(sla) = o ’ s > 0' X € Po
I'(l-a)s

Let ’ denote differentiation with respect to «. Then
computation shows that g’ and g” are of the form
-Bss-a -ﬁss—a

9’ (s,®) = g,(x)(ln s)e + g,(x)e
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and
g“(s,a) = g,(a)(1n s)2e™FSs7 4 g, («) (1n s)e PSg™%

+ gs(a)e-Bss-a
where 9qs+ + +49g are continuous functions of a on P which can

be explicitly calculated in terms of the gamma function and
its derivatives. Important properties of g’ and g” for our
purposes are that there are functions wl, w2 € L {0,x) such

that

(2.8) g’ (s,a)| = wl(s) for s > 0, a € P,
and
(2.9) lg“’(s,a)] = wz(s) for s > 0, a € P.

For example, one can take

e-Bs)/sl-c

 (My11n sie”Ps 4 M, , for 0 < s < 1
¥y(s) =

M;11n s|e”fs 4 Mze_Bs, for s =z 1,

where M1 and M2 are upper bounds on P of Igl(a)l and Igz(a)l,

respectively. There is an analogous expression for wz(s).

Therefore, by Taylor’s theorem with remainder, we obtain
IK(s,a + h) - K(s,a) - K'(s,a)hi

lg(s,a + h) - g(s,a) - g’ (s,a)h|

Ig” (s, &, (s))h?/2]

1A

¥, (s) [hi?/2

for s >0, a, a+ h e P, and El(s) between a and «a + h.
Integrating this inequality over (0,») and using wz € Ll(o,m)
yields (2.7) and completes the proof of Theorem 2.1.

A sufficient smoothness property for the local
convergence of the parameter estimation algorithm is
established in the following theoren.

Theorem 2.2, For every t € [0,T], a* € P and Yo € X,

DaS(t,a)y0 is strongly locally Lipschitz continuous with
respect to a at a*.
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Proof: The proof relies on Lemma 3.3 of [8]. We must show
that hypotheses (H11l) and (H12) of that paper hold in this
application. By definition (2.6), (H1l) requires that there

exist constants Kl' 51 > 0 such that

T .0
(2.10) Iolf (K(-s,a+h) ~ K(-s,a))y(t+s)ds|dt = Kllhllnl

for |hl| = 8, where y is the solution of (2.3) with a = a* and
¢ = 0. Note that since (y(t),y,) = S(t,a,) (n,0) we have
ly(t)! = Mlewtln! for t =2 0, and y(t) = ¢(t) = 0 for t < 0.
It is shown in [7) that the constants Ml

independently of a € P. Therefore, by Fubini’s theorem and
the mean value theorem we obtain

and w may be taken

T .0
j I | (K(-s,a+h) - K(-s,a))y(t+s)lds dt
0 "=

0

- [
J

0

M. T wT 0

y7eTiml [ 1K(=s,a+h) - K(-s,0)lds
-

T+s
IK(-s,a+h) - K(-s,a) | j ly(t)ldt ds
S

1A

T
IK(-s,a+h) - K(-s,a)| j ly(t) |dt ds
0

-0

A

0
= m,7e“Tinn| f_mwl( s)ds

for a, o + h € P. Here we have used (2.8) in the last
inequality. Since wl € L (0,»), this establishes (2.10).

Hypothesis (H12) of [8] requires the Lipschitz continuity
of the derivative with respect to a of the mapping ¥(«a)
defined by (2.6). For brevity, we denote the value of this
derivative at o € P by D¥(a). The existence of DF(a) was
shown in Theorem 2.1 and from the proof of that theorem we
have the formula

0
[DF(a)h](t) = ( j [K' (-s,a)h]y(t+s)ds, 0 )

for 0=t =T, heR, a € P, where y is the solution of (2.3)
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with o = ay and (m,p) = Yqo- Recall that ’ denotes

differentiation with respect to a. The local Lipschitz
continuity of DF(a) at a point a = a* € P now follows from
2stimates similar to those used to establish (H11l) but with w2

in place of wl. This completes the proof of Theorem 2.2.

We now turn our attention to solutions of the
nonhomogeneous equation (2.1). It is well-known that a mild
solution to this equation is given by the variation of
constants formula

(w(t),w

¢) = S(t,0)(n,p) + Q(t, )

where

t
(2.11) a(t,a) j S(t-s,a) (F(s), 0)ds.
0

It remains, therefore, to consider the existence and
smoothness of the derivative of Q(t,a) with respect to a. We
again appeal to [8] where these properties of Q(t,a) are
demonstrated by con51der1ng similar properties of the mapping
() : L! {0,T;X) - L (0,T:X) defined by

[(S(a)v](t) = IOB(Q)S(t-s,ao)v(s)ds

for v e L'(0,T;:X), « € P, «, fixed. Note that if

v{t) = (F(t), 0) for some F € L (0,T), then

(w(t) ,w

f) = j S(t-s,ay)v(s)ds

where w is a mild solution of (2.1) with (7m,¢) = (0,0). Since
B(a) is a difference of closed operators,

[S(a)V](t) = B(a) (W(t),W,).

Therefore, using definition (2.5) we obtain in this setting
that

(2.12) [(§(a)v;(t) = ( J K(-s,a)w(t+s)ds, 0 )

where v(t) = (F(t), 0) and w is the solution of (2.1) with
a = o, and (m,¢) = (0,0). Here we assume F is sufficiently
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smooth for the solution w to exist in the strong sense defined
earlier.

Comparing definitions (2.6) and (2.12), we see that
properties of §(a) with respect to a can be proven in the same
way as the corresponding properties of ¥(a) using the solution

of (2.1) in place of the solution of (2.3) at a fixed a, € P.

For this reason the following theorems, which are consequences
of Lemmas 3.2 and 3.4 of [8], are stated without proof.

Theorem 2.3. For F € Ll(o,m), let Q(t,a) be defined by
(2.11). Then for every t ¢ [0,T] and a, € P, Q(t,a) is

Frechét differentiable with respect to « at «. and this

o
derivative is given by the formula

t
D Q(t,a,) = josu:—s,ao) [D 5 (xy) V] (s)ds

where v(t) = (F(t), 0) and §(x) is defined by (2.12).

Theorem 2.4, Suppose the hypotheses of Theorem 2.3 hold.
Then the mapping DaQ(t,a) is locally Lipschitz continuous with

respect to a at every a* € P.

3. The algorithm. 1In this section we define a parameter
estimation algorithm based on quasilinearization and state
some local convergence results. For later adaptation we
develop the algorithm for the case a € P ¢ R" with canonical
basis e i=1,2,. . .,n. In Section 4 the algorithm is

applied in the case n =1. The definitions and theorems
stated here may also be found in (8], but are included here
for completeness.

Using the notation of the previous section, let
Yo = (n,p) € X and a € P. Let C be a bounded linear mapping

from X into a finite-~dimensional space Re, and define

w(t,a) = C(S(t,a)y, + Q(t,a)].

The parameter estimation algorithm is related to the following
optimization problem.

Problem 3.1, Let wj € RZ, j=1,2,. . .,m be data values
taken at times tj € (0,T], j=1,2,. . .,m, respectively. For
o € P define the quadratic cost function
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m
I(@) =Y lwlty,a) - wjl?‘.
3=1

Find a* € P such that J(a*) s J(a) for all a € P.

The quasilinearization algorithm method defines a
recursive algorithm whose fixed point is a local solution of
Problem 3.1. A more complete exposition is given in (3].

Given an initial guess a, € P define

Xppq = e(ak), k=0,1,2,. . .

where

f(a) = a - [D(a)] 'b(a)

R

D(a) =
j

i~ 3

MT(tj,a)M(tj,a)
1
m

b(a) = z MT(tj,a)[w(tj,a) - W,

3]

j=1
and the matrix M(t,a) has its i*" column Ml(t,a) given by

M (t,a) = CD_[S(t,a)y, + Q(t,a)]le;, i = 1,2,. . .n.

The following theorems are typical of quasilinearization
methods. Their proofs may be found in [8]. We obtain
superlinear convergence when there is an exact fit to data
(Theorem 3.1) and linear convergence in the presence of error
(Theorem 3.2).

Theorem 3.1, Suppose the conditions of _the previous section
are satisfied. Moreover, assume [D(a)] exists, {(a*) = ax,
and J(a*) = 0. Then for every € > 0 there exists § > 0 such
that

f(a) - f(a*)| = ela — ax*]

for |a = a*| s §. In particular, there is a neighborhood U of

a* such that ak > a* as k - o whenever ao e U.

The following theorem does not require an exact fit to
data but does place some technical restrictions on the
behaviour of the matrix M(t,a) near a*. Note that under the
conditions of Theorem 2.2 there exists number & > 0 such that
for 0 < 8 < 8 there exists a constant K(8) such that
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IM?(tj,a) - M?(tj,a*)l s K(8)la = awl
1

W 0~>18

3

for la - a*| = 8. Let K* = lim sup K(3) and define
8§ v o

Ak = K*ID(a*)-ll max|w(t.,,a*) - w.l.
j ] ]

Theorem 3.2. Suppose the conditions of the previous section
are satisfied. Moreover, assume [D(a*)) ! exists and

{(a*) = a*. Let A* be defined as above and assume A* < 1.
Then there exists 8* > 0 such that

() = f(a*)] = A*ja - a*|

for |la - a*| = §*, 1In particular, x = a* as k 9 = whenever
- k| = &%,
lao ok | é

4. Numerical results, In this section we present several
examples that illustrate the ideas discussed in the previous
sections. Recall the identification problem : given
observations Wj at times tj' 3=1,2,...,m, determine

o € {0,1) that minimizes th cost functional

Iy = T (x(t5) = wy)?
j=1
where x(t) satisfies
t t -B(t-s)
x(t) = a| x(s)ds + = A— [ Z———u0 x(s)ds + £(t),
Io F'(1=a) Io (t-s)“
(4.1)
x(0) = Xy -

The quasilinearization algorithm requires that we solve (4.1)
along with its sensitivity equation which has the form
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, t t _-B(t-s)
. - 7 e
xa(t) ajoxa(s)ds + {1i=a) IO (t—s)a xa(s)ds
‘o t -B(t=-s)
+ i Q1 a; € P x(s)ds
(4.2) ) r(i-a) 0 (t-s)
t -B(t-s)
_ 7 ln(t-s)e
(1-a) ‘[0 (t-s)< x(s)ds,
| %4(0) =0,

where xa(t) = %g(t). The zero initial condition reflects the
fact that the value x(0) = x

o.

0 is independent of the parameter

The imblementaton of the identification scheme begins
with an initial gquess for «. Equations (4.1) and (4.2) are
integrated using this initial value, then x(t) and xa(t) are

used to give an updated estimate of the parameter. For this
particular problem the quasilinearization algorithm updates
the current estimate oy according to

j§1 (X(tj) - wj)xa(tj)

n
)X
J=

2
(x_(ts))
1 ¢
where x(t) and xa(t) are the solutions of (4.1)-(4.2) computed
for a = apy- In ocrder to numerically integrate the state and

sensitivity equations we first convert (4.1)-(4.2) to integral
equations via the substitution z(t) = x(t) and za(t) = xa(t).

Then one has the 4 x 4 system of integral equations consisting
of (4.1)~(4.2) with the above substitutions coupled with

t

X(t) = x(t,) + Jtz(s)ds,
(4.3) P
] t
l X (£) = % (E)) + Itza(s)ds,
p
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where tp € [0,t) is determined by the approximation scheme.

The solution of the system of the integral equations is then
approximated by applying a product integration method based on
Simpson’s rule to the singular integral terms, and Simpson’s
rule to all other integrals. For a description of product
integration methods we refer the interested reader to [16].

In each of the following examples we numerically solve
(4.1)-{(4.3) in time on the interval [0,1]. Define tj = j/N,

j=0,1,...,N. The numerical integration scheme then computes
values for x(tj). Examples (4.1) and (4.2) presented here are

computed using a value of N = 50, and Example (4.3) is
computed using N = 200. In each case 5 data points located at
t=.2, .4, .6, .8, and 1.0 are used in the identification
procedure. The true values of x(t) in all of the Figures
(4.1)-(4.5) are denoted by x.

Example 4.1. In this example we set the values of a, 8, and 7
to 1., 1., and 5.,, respectively. The parameter value to be

identified is a = 5 and the nonhomogeneous term f(t) is
£(t) = e T( 1024t3 + 2176t + 1792 ) - 1825
—t 05
e t 32768 4 8192 .3 512 2 128
T (.5) [ 315 ¢ T35 tr3bt -t 2]

t

The true solution is x(t) = e~ T,(2t - 1) where T, (s) is the

Chebyshev polynomial of degree 4 on -1 s s s 1. Tables (4.1)
and (4.2) contain the results for two computer runs, one for

an initial o of oy = .9, and the other for a, = .2 . The

sequence of «, values, their corresponding costs J(«a and

),
k
the values of the state x(t) at time t = 1 are included to
illustrate the convergence. The true value of x(1) is
.3678794. Note that in each case once an estimate of a is
greater than .5, then the sequence of iterates converges
monotonically down to the true value. This is a characteristic
of all of our computer simulations, and seems to indicate that
it is better to choose an initial value of a that is high
instead of low. In fact, for all simulations another
characteristic is that if the initial choice is excessively
low, then the next estimate of a is greater than 1, and the
integral becomes undefined. For this particular example,

ay = .1 resulted in a value greater than 1 for the next

iterate and the integration scheme broke down. However, though
not shown here, some examples ran succesfully even with a
negative initial value for «. Figures (4.1)-(4.2) show the
convergence of the state x(t) for the initial values of
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a, = .9, and .2, respectively.
a=1, y=5, 8=1, true a = .5, initial a« = .9
Iteration o J () x(1)
0 .9 78.9130445 ~7.7572184
1l .8061489 11.8804011 ~-2.7175508
2 . 7036760 1.6122215 -.7432785
3 .6046577 .1689001 .0158974
4 .5327346 .0090401 .2877378
5 .5034419 .0000834 .3602260
6 .5000500 .0000000 .3677829
Table 4.1
a=1, vy=5, =1, true a = .5, initial a = .2
Iteration o J(a) x(1)
0 2 .1205106 .637832
1 .8835656 55.8792983 -6.443195
2 .7876713 8.3050417 -2.201167
3 .6845883 1.0919149 -.542773
4 .5884893 .1055430 .090622
5 .5236488 . 0045683 .311016
6 .5018820 .0000246 .363724
7 .5000214 . 0000000 .367845
Table 4.2

Example 4.2, Here we set a=1, 8=1, v =4, and a = .9. The
nonhomogeneous term is

10e”t
Ty

In this case the true solution is e ©.

£(t) = -1 - el

This example contains a kernel that is more singular than

that of Example 1. The results for initial values of ay = .999

and oy = .8 are given in Tables (4.3) and (4.4), respectively.

For comparison,the true value of x(1) is x(1) = .3678794. Note
again it appears that a high initial guess of a is preferable
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to a low one. Moreover, for an initial guess of a, = .75 the

algorithm updates the parameter to a value greater than 1 and
the program stops. The convergence of the states is shown in
Figures (4.3) and (4.4).

a=1, vy =4, B8 =1, true a = .9, initial a = ,999
Iteration o J(a) x(1)
0 .999 56.1016515 7.127846
1 .9400160 4.37204423 2.223429
2 .9075174 .1077531 .656523
3 .9002876 .0001462 .378490
4 .9000004 .0000000 .367895
Table 4.3

a=1, 7=4, B =1, true a = .9, initial a = .8

Iteration o J(a) x(1)
0 .8 7.0279032 ~-1.895701
1 .9676194 17.3817062 4.096880
2 .9200856 .8805865 1.195951
3 .9019895 .0071213 .441968
4 .9000204 .0000007 .368632
5 .9000000 .0000000 .367879

Table 4.4

Example 4.3, This example has two features that are different
than the previous examples. In Section 2 we assumed that
B >0, ensuring that the integral in equation (2.4) exists.
This example illustrates that it may be possible to lift this
restriction to include B = 0, which results in a true
ffagtlonal derivative model. Also, for this example x(t) =

. Thus the true solution has an unbounded second
derlvatlve at t = 0. Because integration methods based on
Simpson’s rule converge slowly for functions that do not have
four continuous derivatives, it was necessary to increase N to
200 for this example to gain accuracy.

Here we set the values a=1, =0, ¥ =5, and a = .5.
The function f(t) is in this case
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2.5 2
3t 2t
f£(v) =32 -2 . r(.snlg-— i

The results of the quasilinearization algorithm are given in
Table (4.5) for the initial value of ay = .9. The fact that we

could only obtain a to 3 correct digits is due to the
inaccuracy of the integration scheme used. Figure (4.5)
illustrates the convergence of the states to the true .
solution.

a=1, =5, =0, true a = .5, initial a« = .9
Iteration o J(a) x(1)
0 .9 24.1608906 5.563632
1l .7641130 3.5153401 2.711820
2 .6246967 .3481690 1.531838
3 .5298167 .0127381 1.101062
4 .5019498 .0000392 1.005624
5 .5002170 .0000000 1.000050
6 .5002110 . 0000000 1.000030
Table 4.5
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A DIRECT METHOD FOR PARAMETER

ESTIMATION IN DISTRIBUTED SYSTEMSl

Dennis W. Brewer
and
Robert K. Powers

Department of M~thematical sciences
University of Arkansas
Fayetteville, Arkansas 72701

Abstract., We consider identification of parameters in a
partial differential equation rodeling the longitudinal
vibrations of a viscoelastic beam. A semi~discrete
approximation of this model gives rise to a Volterra
integro~-differential system with a weakly singular kernel.
Such keinels arise in fractional derivative damping models of
viscoelastic materials. A quasilinearization method is used
to identify damping parameters in the system. We present the
results of numerical experiments using a Galerkin
approximation in space and an approximation in time which is
adapted to weakly singular systems whose kernels are not
continuous at the origin.

1. Introduction. In this paper we consider numerical methods
for the identification of parameters in an idealized physical
model for the longitudal motions of a uniform bar fixed at
both ends with Boltzmann type damping. The governing equation
is ([10], (15]})

a t
—— a -
putt(x,t) = g; {Eux(x,t) + € Jog(t s)ux(x,s)ds }
(1.1)
+ f(x,t), 0 < x < 1, t > 0,
with boundary conditions u(o,t) = 0, u(l,t) = 0,

1This research was supported by the Air Force O0Office of
Scientific Research under grant AFOSR-89-0472.
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and initial conditions u({x,0) = d(x), ut(x,O) = v(x).

Here, u(x,t) represents the axial displacement of position x
at time t, p is the density of the material, E a stiffness
parameter, f(x,t) a forcing function, and

ye BS

g(s,q) = -———— , s > 0,
I'(i-a)s

represents a fractional derivative damping term modified to
have exponential decay [13]. Here I'(-) denotes the gamma
function and q = (a,8) € R® with 0 s &« < 1 and 8 > 0. Such
kernels ari ‘e in the study of fractional derivative models of
viscoelastic structures. We refer the reader to [13], [19],
{14]), [16], and in particular to [18] and the extensive
bibliography therein for a discussion of viscoelastic models
as they relate to weakly singular kernels.

In this paper we consider the identification of a« and B.
Much of the groundwork for this paper appears in [92) and [8])
where the identification of scalar systems is considered and
in [6] and [7] where the theoretical framework used here is
established. Torvik and Bagley [1], [19] have estimated the
parameter a in the Laplace transform domain. Banks, et. al.,
(2], [4]) have identified parameters corresponding to 8 and 7
in a similar but different model assuming a is known.

A Galerkin approximation is used to approximate (1.1) by
a Volterra equation with weakly singular kernel. 1In the
example presented below, this semi-discrete model is solved
using a product integration method based on Simpson’s rule.
Product integration methods using polynomial collocation are
well suited for equations of the form (1.1) if the solution is
analytic on the entire interval of interest. However, for the
kernel of interest in this paper, the solution is not analytic
at t = 0 if f(t) is smooth [17].

If one applies a Galerkin scheme to equation (1.2), one
obtains a system of second-order integro-differential
equations. Integrating a scalar form of this system yields an
equation of the form (See [9] for details.)

t t
a I x(s)ds + I g(t-s)x(s)ds + £(t),
0 0

it

x(t)
(1.2)
x(0)

I

xO'

A standard assumption in viscoelasticity [14] is that the

material is in an unstrained state for time t < 0. This would
correqupd to u(x,s) = 0 for s < 0 in equation (1.1). Define

z2(t) = I X(s)ds. It follows then that x(s) = 0 and z(s) =0
0
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for s < 0. If we define w(t) = col(x(t),z(t)), then w(t)
satisfies

t
w(t) = Mw(t) +f K(t-s)w(s)ds + F(t),
(1.3) X - 0 )
w(0)=[ °], w(s)=[ , s <0,
0 0

where M = [ 92 ], K(s) = [ gés) 0 j , and F(t) = [ £ ].

2, The algorithm. In this section we state for reference the
quasilinearization algorithm which is defined in an abstract
semigroup formulation of equation (1.3). Details of this
construction and related smoothness results may be found in
{7]) and [9). We consider equation (1.3) in the form

w(t)
(2.1)
w(C) = m, w(s) = ¢(s), s < 0,

i

0
Mw(t) + j K(-s,q)w(t+s)ds + F(t), t > 0,

X
where 7 = [ O] € R°, M= ( 0 2 }, F(t) = ( fét)}, and

1e—Bs { 1

0
F(1-a)s®* L 0 O ]' s> 0

K(s,q) =

We are interested in dependence on the parameter q =
(x,B) where 8 > 0 and 0 = « <21. By a solution of (2.1) we
mean a function w: (-=,®) » R° such that w is absolutely
continuous (A.C.) on [0,») and satisfies the integral equation
a.e. on [{0,»), w(0) =7, and w(s) = p(s) a.e. on (-=,0].

Our semigroup formulation follows the construction in [5]
as further d%yoloped in [11) and [12]). Define the product
space X =R" x L (-0,0) with norm
u(n,¢)ux = Inl + nwnLa(_m'o). Then it can be shown that the

solution of (2.1) is given by the variation of constants
formula

(w(t),w.) = S(t,q)(n,e) + Q(t,q)
where
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t
(2.2) Q(t,q) = IOS(t—s.q)<F(s), 0)ds.

and S(t,q) is a Co-semigroup on X corresponding to the

homogeneous version of (2.1).

We are now in a position to define a parameter estimation
algorithm based on quasilinearization and state some local
convergence results. For later adaptation we develop the
algorithm for the case q € P ¢ R" with canonical basis

e, i=1,2,. . .,n. In Section 3 the algorithm is applied in

the cases n=1 and n = 2. The definitions and theorems
stated here may also be found in {7], but are included here
for immediate reference.

Let Yo = (n,p) €« X and qe P. Let C be a bounded linear

mapping from X into a finite-dimensional space RZ, and define
y(t,q) = C[S(t,q)y, + Q(t,q)].

The parameter estimation algorithm is related to the following
optimization problemn.
Problem 2.1, Let yj € Re, 3=1,2,. . .,m be data values
taken at times tj € [0,T), J=1,2,. . .,m, respectively. For
q € P define the quadratic cost function
m .
- _ 2
J(q) —'Z ly(ty,@) - 3517
J=1
Find g* € P such that J(g*) = J(qg) for all q € P.

The quasilinearization algorithm method defines a
recursive algorithm whose fixed point is a local solution of
Problem 2.1. A more complete exposition is given in [3].
Given an initial guess d, € P define

Ae1 = #(qk), k=0,1,2,. . .
where -
£(q) =& - [(D(q)] "b(q)
_ T
D(q) = ) M (t5, QM(ty,q)

m J=1

— T -
b(a) = ) W (t5,@) ¥ty - ¥y)
1=1 :
and the matrix M(t,q) has its i*" column Ml(t,q) given by
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M(t,q) = CD_(S(t,@)y, + Q(t,q)ley, i=1,2,. . .n.

The following theorems are typical of quasilinearization
methods. Their proofs may be found in [7]. We obtain
superlinear convergence when there is an exact fit to data
(Theorem 2.1) and linear converaence in the presence of error
{(Theorem 2.2).

Theorem 2.1. Suppose the conditions of_?he previous section
are satisfied. Moreover, assume [D(q)] exists, {(g*) = g¥*,
and J(g*) = 0. Then for every £ > 0 there exists 8§ > 0 such
that

if(a) = {(g*)! = elqg - q*l

for |g - q*| = 8. In particular, there is a neighborhood U of
g* such that qy 2 g* as k » » whenever qq € Uu.

The following theorem does not require an exact fit to
data but does place some technical restrictions on the
behaviour of the matrix M(t,q) near g*. Note that under the
conditions of Theorem 2.2 there exists number § > 0 such that
for 0 < 8§ < 8 there exists a constant K(8) such that

m
L IM(ty,Q) - M (t5,q%) | S K(3)Iq - q*
j=1
for |g - g*] = 8. Let K*¥ = lim sup K(8) and define
s VYo

A* = K*|D(g*) '] max|w(t.,q*) - w,l.
3 J J

Theorem 2.2, Suppose the conditions of the previous section
are satisfied. Moreover, assume [D(g*)) exists and

{(g*) = gq*. Let A* be defined as above and assume A* < 1.
Then there exists é* > 0 such that

1(a) =~ f(g*)!l = a*lg - q*|

for |Iq - g*| = 8%, In particular, q 2 g* as k » «» whenever
Iq0 - g*} = &%,

3. Numerical results. In this section we present numerical
results for parameter estimation in a semi-discrete
approximation of the partial differential equation
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putt(x,t) = Euxx(x,t)
t_-B8(t-s)
+ I J E—————;— uxx(x,s)ds + fl(x,t)
F(i1-«) 8t 0 (t-s)
with boundary conditions u(o,t) = 0, u(l,t) = 0, and
initial conditions u(x,0) = uo(x), u, (x,0) = ul(x).
Integrating with respect to t one obtains

t
put(x,t) = Ejouxx(x,s)ds +

t =B (t-s)

L u__(x,s)ds + £_(x,t)
r(1-a) Io (t-s)® XX 2

t
where fz(x,t) = J £, (x,s)ds + pu, (x).
0

We apply a Galerkin approximation in which the interval (0,1}
is divided into N equal parts and the homogeneous boundary
conditions allow us to approximate the solution by a function
N
of the form u(x,t) = Z
j=0
basis element. Substituting in the equation, taking an inner
product with a basis element ¢k’ and integrating by parts

aj(t)¢j(x) where ¢j is a cubic spline

yields a Volterra equation in t of the form

t
pANy (t) = —EDNJ v(s)ds -
0

(3.1} t _-B(t-s)
S DNI & v(s)ds + f,(t)
(1-a) 0 (t-s)

where A" and bV are N+1 x N+1 matrices depending on inner
products of,q)j and ¢5.

The quasilinearization algorithm requires that we solve
(3.1) along with its sensitivity equations which have the form
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" t t _~B(t-s)
. = 7 e
X (t) afoxa(s)ds * i jo r—r x_(s)ds
P t _-B(t-s)
+ (1 a; e - x(s)ds
(3.2) 1 f(1l-a) 0 (t-s)
t -B(t-s)
4 In(t~s)e
~ wTI oo x(s)ds,
F(1-a) J, (t-s)%
L x,(0) =0,
t t -B(t-s)
N - v e
Xg (t) afoxB(s)ds * rry Jo - Xg(s)ds
t _-B(t-s)
(3.3) 1 - ¥ e (t-s)
I{1=a) IO (t-s)a X(s)ds
\ xB(O) = 0.
where X, = gg and XB = gg. The zero initial condition

reflects the fact that x(0) = X,

It is important to note that (3.2) and (3.3) also have weakly
singular kernels.

The implementaton of the identification scheme begins
with an initial guess for g = («,B). Equations (3.1)-(3.3) are
integrated using this initial value, then x(t), xa(t),and

B
using the quasilinearization algorithm.

As a specific example consider the partial differential
equation

is independent of a and B.

X,(t) are used to give an updated estimate of the parameter

pu . (X,t) = Eu, (X,t)

t_-B(t-s)
y -4 g J 3—-———3— uxx(x,s)ds + f(x,t)

(l-o) 3t "0 (t-s)
with boundary conditions u(0,t) = 0, u(i,t) = 0, and initial
conditions u(x,0) = 0, ut(x,O) = 4nsin(2nx), where p =1,

E=1, v =1, a =1/2, and 8 = 0. The exact solution is
u(x,t) = sin(2nx)sin(4nt) with the forcing function chosen as
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The numerical scheme uses N =

f(x,t) =

+ 4n

2

vt sin(4nx) Z

n¥er

nsin(2nx) + 3usin(2nx)cos(4nt) +

2k+1

k=0

2k + 5/2)
8 and h = .02. The parameter

estimator uses 70 data points taken from the exact form of

ut(x,t).

The results of an application of the

quasilinearization algorithm to the estimation of the
parameter a are given in the table below.

Iteration

OO WNRE O

o

.9
0.0783169
0.2310107
0.3658041
0.4729954
0.4990789
0.5002075
0.5002095
0.5002095

J(x)

1703.2400606
10811.4763257
4486.6256214
1012.4621853
32.7112404

0.0523379
0.0001728
0.0001726
0.0001726

The table below shows the results of the algorithm for
identifying both the parameter a and 8.

1.

Iteration a B J{a,B)
0 0.2000000 0.5000000 5076.0182126
1 0.2986892 6.5002076 1394.6849127
2 0.5281903 7.7538270 273.4823741
3 0.4674188 -4.2094682 469.6983381
4 0.5135026 -3.4408819 70.7243517
5 0.5203233 -2.3067455 26.1540142
6 0.5029341 -0.1314789 0.2291736
7 0.5001956 0.0032037 0.0001997
8 0.5002027 0.0009508 0.0001674
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